Source-specific characteristics of aerosol OM over the North Atlantic Ocean: Implications for the identity of potential Fe binding ligands

> STEPHANIE D. MCELHENIE ANDREW S. WOZNIAK RACHEL U. SHELLEY WILLIAM M. LANDING PATRICK G. HATCHER

What do aerosols have to do with Fe?

- Primary source of Fe to the ocean
- Mineral-dust influenced
 i.e. North African
 High Fe_T but low %Fe_S (<1%)
- Anthropogenic-combustion influenced
 i.e. North America, Europe
 Low Fe_T but high %Fe_S (up to 20%)

<u>Hypothesis</u>: Combustion sourced aerosol OM is molecularly distinct from mineral-dust aerosol OM facilitating increased Fe solubility

(Wozniak et al., 2013; Sedwick et al., 2007; Mahowald et al., 2005, Sholkovitz et al., 2012)

Experimental Methods

- 2011 US GEOTRACES North Atlantic cruise aerosol samples
- Aerosol samples (n=24) with N. American-, N. African-, and marine influenced air masses were analyzed for:
 - $\operatorname{Fe}_{\mathrm{T}} \& \% \operatorname{Fe}_{\mathrm{S}}$
 - WSOC
 - Molecular characteristics of WSOM using ¹H NMR
- PCA is used to identify molecular characteristics source-specific to N. American, N. African, and Marine influenced aerosol WSOM sources.

Total Fe Concentration (nmol m⁻³)

- Anthropogenic samples show lower Fe_{T} concentrations but much higher $\%\text{Fe}_{\text{S}}$
- Mineral-dust samples show higher Fe_T concentrations but lower $\%Fe_S$

(Sholkovitz et al., 2012)

WSOC/Fe_T vs. %Fe_S

- Anthropogenic-influenced samples are high in %Fe_S and WSOC/Fe_T ratios
- Mineral-dust samples are low in %Fe_s and WSOC/Fe_T ratios

(Wozniak et al., 2013)

ODU

N. American & N. African Spectra

Principal Component Analysis (PCA)

N. Am 7 & N. Am 8 have an unusually high composition of N containing functional groups according to FTICR-MS

(Wozniak et al., in review)

Summary

- High solubility, anthropogenic-influenced samples have:
 - High WSOC/Fe_T ratios
 - Enriched in aliphatic, β -heteroatom, and carboxylic acid groups
- Low solubility, mineral-dust samples have:
 - Low WSOC/Fe_T ratios
 - Enriched in carbohydrate and carbonyl functional groups
- Preliminary results show the aliphatic, β-heteroatom, and carboxylic acid functionalities are consistent with the literature for OM ligands facilitating Fe solubility.
- Future Work: 2D NMR

Acknowledgments:

Rachel Sleighter Amanda Willoughby The Hatcher Group NSF GEOTRACES Project Source-specific characteristics of aerosol OM over the North Atlantic Ocean: Implications for the identity of potential Fe binding ligands

